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Abstract. For problems where the evaluation of an individual is the
dominant factor in the total computation time of the evolutionary pro-
cess, minimizing the number of evaluations becomes critical. This paper
introduces a new crossover operator for genetic programming, memetic
crossover, that reduces the number of evaluations required to find an
ideal solution. Memetic crossover selects individuals and crossover points
by evaluating the observed strengths and weaknesses within areas of the
problem. An individual that has done poorly in some parts of the prob-
lem may then imitate an individual that did well on those same parts.
This results in an intelligent search of the feature-space and, therefore,
fewer evaluations.

1 Introduction

As genetic programming is being applied to problems where the evaluation times
dominate the total compuation time, the feasibility of finding solutions in a rea-
sonable time frame becomes increasingly important. This requirement becomes
even more evident when genetic programming is applied to domains such as robot
control (e.g., [1]) where the time to evaluate an individual’s fitness many times
is prohibitively expensive, as the evaluation time is often orders of magnitude
larger than the remaining computation time required by genetic programming.
In such cases it is crucial that the maximum amount of information be extracted
from each evaluation, even at the cost of greater computation time.

For these reasons we introduce memetic crossover. Memetic crossover is based
on imitation—people learn, not only from their own direct experiences with the
world, but also by following patterns, models, or examples they have observed.
This imitation is an active process by which people acquire cultural knowledge.

This new approach extracts more information from an individual than just
its overall fitness. It allows the system to evaluate how portions of the individual
perform in specific areas of the problem (referred to as sub-problems). This
information allows the system to intelligently combine individuals by identifying
the most promising portions of each one. As a result, fewer evaluations are
required and the feasibility of finding a solution in a reasonable time is increased.
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2 Related Work

Dawkins [2] proposed the evolution of cultural knowledge through the use of
cultural replicators he termed memes. The concept of memetic algorithms was
proposed by Moscato [3] in an effort to model evolutionary computation on cul-
tural evolution instead of biological evolution. Moscato recognized that there are
at least two great differences between biological evolution and cultural evolution:
(1) individuals cannot choose their own genes, whereas memes can be acquired
intentionally, and (2) individuals may modify and improve upon the memes that
they acquire, whereas they cannot do so with their genes.

Hougen et al. [4] noted that Moscato chose to implement only the second
difference and, therefore, presented a new approach called memetic learning al-
gorithms that implements the first difference. In this approach, individuals are
given the opportunity to learn through the imitation of other individuals. An
individual will imitate when it is able to find another that was more successful
than itself in some situation. In the present paper and, concurrently, elsewhere [5]
we extend the concept of memetics from genetic algorithms to genetic program-
ming. (In that other work we consider the artificial ant problem using the quite
difficult Los Altos trail and the royal tree problem. Here we consider the artificial
ant problem using the better-known Santa Fe trail and the bumblebee problem.)

The use of Koza-style Automatically Defined Functions (ADFs) [6,7] restricts
the crossover operator to operate within the branches of the individual, namely
the main execution branch and the defined functions. However, the selection of
the branches or nodes on which to perform crossover is done randomly.

Work has been done on restricting crossover to nodes that reside in similar
contexts within the individual [8]. Here again, emphasis is placed on the genotype
of the individual, namely the locations of the nodes, not the phenotype.

Langdon [9] tracks the progress of an individual while it is being evaluated
in an effort to only perform crossover on trees that have performed poorly in
a particular portion of a problem. However, once a tree has been selected for
crossover, node selection is performed randomly.

The automatic discovery of subroutines during the evolutionary process [10]
has been investigated as a way to detect useful building blocks within an individ-
ual. This approach requires two methods of analysis. First, viable individuals are
selected when they demonstrate marked improvement in fitness with respect to
the fitness of their worst parent. Second, possibly useful subroutines are chosen
by their relatively high execution rate within the individual. This approach dif-
fers from our approach in that only potentially successful areas are identified, not
successful and failed nodes, and the fitness of the various potential subroutines
is inferred from the overall fitness of the individual, not observed directly.

While multi-objective fitness [11] attempts to utilize more information
learned from the evaluation of an individual than a simple fitness value, it does
not delve into the individual itself in an effort to determine the fitness of its
components.
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3 Proposed Approach

Memetic crossover is directly inspired by Dawkins’ idea of the acquisition of
memes through imitation [2]. For imitation to be effective in reducing the amount
of time spent learning, it must be able to discriminate between parts that lead
to success and parts that lead to failure.

Memetic crossover achieves this requirement through a three-step prepara-
tory process. First, the problem must be broken down into sub-problems. These
sub-problems can be pre-defined, determined upon initialization, or observed
during execution. Second, the evaluation order of nodes within each sub-problem
is tracked during the fitness evaluation of the individual. Note that this track-
ing in no way affects the process of evaluating fitness of the individual. Third,
for each node, the sub-problems for which it contributed to success and failure
are analyzed and used to rank the nodes for each result category. In standard
crossover, a bias towards selecting non-terminal nodes 90% of the time is made.
We favor this option so a multiplier is applied to non-terminal nodes during
the ranking process. This allows us to bias the ranking without falling back to
random selection (as in standard crossover).

When a recipient individual is selected for memetic crossover, an effort is
made to find a compatible donor individual. The sub-problem performance of
the worst nodes of the recipient and the best nodes of the donor are compared.
If the match between the sub-problems for a pair of nodes exceeds the thresh-
old value for that generation, the individuals are considered compatible and
crossover occurs with the recipient receiving the donor’s “good” node. If a com-
patible donor is not found after a predetermined number of selections, the donor
containing the best found match is used. When appropriate, the required match
threshold between nodes starts low and increases with each generation. This is
done to counter the relatively high failure rates in sub-problems early on that
result from the fact that the initial population is generated randomly. As in-
dividuals become more successful in sub-problems, the probability of finding a
compatible match between nodes increases.

It is important to note that the memetic crossover operator does not require
any problem-specific information. Sub-problems are only referred to by an iden-
tifier for the matching process. Thus, no passing of problem information to the
operator is required. While the addition of problem-specific information is not
prohibited, this was not done in any of the experiments presented so as not to
give our approach an unfair advantage.

4 Experiments

To evaluate memetic crossover, two standard problems were chosen. The artificial
ant problem was chosen because it can easily be decomposed into unique sub-
problems. The bumblebee problem was chosen because the sub-problems are not
unique.
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4.1 The Artificial Ant Problem

Background. For our first test of memetic crossover, we use the standard
genetic programming benchmark problem of the artificial ant using the Santa
Fe trail [6]. The goal is to evolve a program that can successfully traverse a food
trail with gaps. Fitness is calculated as the amount of uneaten food that remains
after traversal. It is important to note that the program may be evaluated as
many times as is necessary to either eat all the food or reach the movement
limit.

Configuration. First we must find the sub-problems involved in order to ade-
quately evaluate the fitness of the individual’s components. For this experiment,
we define a sub-problem as navigating a gap in the trail (i.e., eating the food
items on either side of the gap in succession). The trail is analyzed upon initial-
ization and the gaps are labeled. Note that there is no preferred order of traversal
for the gap. To have a preferred order, the trail would have to be analyzed by
traversing it, thus negating the reason for evolving a solution.

As the individual is evaluated, the order of execution of the nodes in the
evaluation is recorded. If a node is involved when the ant eats the food on
either side of the gap in succession, it is labeled as contributing to the successful
completion of the sub-problem. If, however, the node is involved when the ant
wanders off the path at a gap and runs into the trail at another point, it is labeled
as contributing to the failed completion of the sub-problem. Once evaluation of
the individual is completed, nodes are ranked in two categories: best and worst.
The top N (in our case, 5, see section 5 ) are saved for use in crossover.

The parameters used for the system are the same as those used by Lang-
don and Poli [12]. The baseline implementation uses 90% standard, one child
crossover and 10% elite cloning. It is also important to note that instead of the
400 maximum moves used by Koza [6], a value of 600 was used. To adequately ex-
plore the effects of varying the amount of memetic crossover and the non-terminal
multiplier, several values for each variable were evaluated. Memetic crossover
contributions of 10% to 90% were used in conjunction with 10% cloning—the
remaining percentage being standard crossover. Non-terminal multiplier values
of 1 to 9 were used for each memetic crossover percentage evaluated. For each
combination, including the standard implementation, 500 runs were made.

Results. For the standard crossover alone, 465,500 of individuals need to be
processed to yield a solution 99% of the time (Fig. 1), which is consistent with
Koza’s result [6] of 450,000 individuals. When 30% of a generation is created with
memetic crossover and a non-terminal multiplier of 7, only 322,000 individuals
need to be processed, a 30% reduction (Fig. 2). On average for all non-terminal
multipliers evaluated for a 30% memetic crossover contribution, 394,500 individ-
uals need to be processed, a 15% reduction.

As the memetic crossover contribution is increased, however, a different pic-
ture arises. At the extreme of 90% memetic crossover and 10% cloning, only
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Fig. 1. Performance curves for the ant problem with no memetic crossover. The vertical
line indicates E = 465,500, the minimal number of individuals to be processed to yield
a solution 99% of the time. The solid plot represents the cumulative probability of
success P (M, i) and the marked plot represents the number of individuals that need
to be processed.
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Fig. 2. Performance curves for the ant problem with 30% memetic crossover and a
non-terminal multiplier of 7. (E = 322,000 individuals)

two solutions were found in 4,500 runs and those were found in the initial gen-
eration. While initially surprising, the result is logical. Without the standard
crossover, there is no exploration of the search space. All the individuals are
trying to imitate one another and none are attempting to learn anything new.
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Of the percentages examined, a 30% memetic crossover contribution showed the
best performance (Fig. 3). However, even with memetic crossover, the problem
remains quite difficult as less than 20% of runs end in success.

Running Time. Because some researchers may be interested in applying
memetic crossover in problem domains in which evaluation time per individ-
ual may not be the dominating factor, we also looked at the run-time cost of
memetic crossover using the artificial ant problem. An additional 500 runs were
performed using the standard crossover method and the memetic crossover con-
figuration that yielded the best results. In the standard case, the total calculated
run time to reach a 99% probability of finding an ideal individual was 178,966
ms, while the run time of the memetic case was 218,490 ms. While using memetic
crossover for this problem increased the total run time by approximately 22%,
it is important to note that this problem represents the extreme lower end of
problems in which memetic crossover is applicable as the evaluation time for
individuals is quite low (approximately 0.15 ms per individual). Furthermore,
we should note that our code has not been optimized for run time and believe
that the runtime for the memetic case would decrease should we attempt to
optimized the code. In other words, in cases where the evaluation time for each
individual is exceedingly small, using memetic crossover may be worse in terms
of run time than standard genetic programming methods. However, we are most
interested in cases in which evaluation time for each individual does dominate.
In such a case, memetic crossover has the potential for tremendous speed-up. In
the limit (as evaluation time per individual goes to infinity) a 30% reduction in
evaluations, for example, would result in an overall 30% reduction in effort.

Table 1. The minimum number of individuals to be processed (E) observed in the ant
problem for memetic crossover rates of 10% to 90% and non-terminal multiplier values
of 1 to 9. The standard, non-memetic approach yields a result of E = 465,500. “MAX”
indicates that there were no solutions found in any run and E is at the maximum value.

1 2 3 4 5 6 7 8 9

0.1 427500 448500 351000 375000 360000 390000 389500 390000 382500
0.2 357000 348500 434000 392000 389500 429000 360000 480000 399500
0.3 384000 357000 392000 441000 470000 340000 322000 391000 450500
0.4 496000 405000 389500 528000 470000 416500 460000 448000 352000
0.5 527000 374000 563500 427500 413000 442500 498000 462000 512000
0.6 520000 773500 616000 589000 622500 800000 646000 892500 622500
0.7 978000 960500 772500 1059500 870000 700000 1120000 960500 833000
0.8 1287000 1798500 1026000 1137500 1573000 1704000 864000 1910000 1040000
0.9 MAX 1150500 MAX MAX MAX MAX MAX 1150500 MAX
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Fig. 3. The minimum number of individuals to be processed for varying percentages of
memetic crossover. The dashed line indicates the number of individuals to be processed
when no memetic crossover is used. (E = 465,500 individuals)

4.2 The Bumblebee Problem

Background. The second test uses the well-known bumblebee problem [7].
For this problem, the goal is to evolve a program that navigates a bee to all the
flowers located in a plane. This problem was specifically designed to be scalable in
difficulty. The more flowers that exist in the plane, the more difficult the problem
becomes. Since the individual will only be executed once during evaluation, it
will be large and full, with its size increasing as the difficulty of the problem
increases. For the flower counts used in this experiment, the bumblebee problem
is much easier to solve than the artificial ant problem.

Configuration. Since the locations of the flowers for each fitness case are de-
termined randomly upon startup, individual sub-problems—navigating from one
flower to another—will have to be observed during execution and not determined
beforehand. Furthermore, there is no preferred order of traversal for the flowers
as the next flower to visit is generated randomly each time. Since enumeration of
all the possibilities would be prohibitive as the problem scales, we only consider
the total number of successful and failed sub-problems for each node.

For this problem, we define successful completion of a sub-problem as navigat-
ing to the next flower using the minimum number of moves. Since all movement
is orthogonal in the plane, the minimum number of moves in the general case
is two. Each node’s execution is tracked as the individual solves a sub-problem.
Once the individual has been evaluated, the top N nodes in each category are
saved. The memetic crossover implementation used for this problem is similar
to that of the ant problem with one exception—the specific sub-problems of the
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donor and recipient nodes are not compared with one another since sub-problems
are not unique. We predict that this will hinder the effectiveness of the memetic
approach as we are less able to gauge effectively the match between nodes.

The parameters used for the system are the same as described by Koza [7].
The baseline implementation uses 90% standard crossover and 10% elite cloning.
Again, several values for the memetic crossover contribution and non-terminal
multiplier were used. Values ranging from 1 to 5 were used for the non-terminal
multiplier because they seemed to provide the most interesting insight. A value
of 9 was also used since standard crossover is biased and selects non-terminals
90% of the time. A total of 60 runs were made for each combination of variables.

Results. As was predicted, the benefit of memetic crossover was hampered by
the the operator’s inability to to create an effective match between the crossover
nodes. While the purely standard crossover approach on a 10-flower problem
yielded a result of 80,000 individuals requiring processing, the best memetic
crossover approach yielded 68,000. This is certainly an improvement over the
standard method, but not nearly as dramatic as the previous results.
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Fig. 4. Performance curves for the bumblebee problem with 10 flowers using standard
crossover. (E = 80,000 individuals)

For the 15-flower version of the problem, the addition of memetic crossover
yielded a much better result, 128,000 individuals to be processed as opposed
to the 176,000 individuals of the purely standard method. However, the benefit
only appeared in standard and memetic crossover combinations with relatively
low contributions from memetic crossover. In both versions of this problem, the
negative impact of a purely memetic approach was not as apparent as in the ant
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Fig. 5. Performance curves for the bumblebee problem with 10 flowers using 30%
memetic crossover and a non-terminal multiplier of 3. (E = 68,000 individuals)
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Fig. 6. Performance curves for the bumblebee problem with 15 flowers using standard
crossover. (E = 176,000 individuals)

problem. This is most likely a result of the selection of crossover nodes being far
more lenient and choosing a broader range and context of nodes.

5 Discussion

For both problems, the addition of the memetic crossover reduced the the number
of individuals that are required for processing. The nature of the ant problem,
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Fig. 7. Performance curves for the bumblebee problem with 15 flowers using 10%
memetic crossover and a non-terminal multiplier of 5. (E = 128,000 individuals)

namely its easy decomposition into reasonable sub-problems, allowed it to exploit
memetic crossover to a greater degree than the bumblebee problem. In the ant
problem, memetic crossover was able to effectively match a failure-prone node to
a success-prone node based on the related sub-problems. Thus, individuals were
able to imitate the actions of another within a particular set of sub-problems.
Since the sub-problems for the bumblebee problem were far less specific than
for the ant problem, memetic crossover’s impact was limited. Since there was
no particular context associated the success or failure of a sub-problem, the
imitation exhibited by individuals was far less intelligent. This disparity is not
readily evident in the results as the improvement in the bumblebee problem is
almost as dramatic as that in the ant problem. We believe that this is because
each sub-problem requires effectively the same solution, minimizing the lack of
context for sub-problems. Furthermore, for the complexities used, the bumblebee
problem is much easier to solve with genetic programming than the ant problem.

The choice of retaining N = 5 nodes in each category for use in crossover
was made to allow for multiple opportunities to find a effective match while not
requiring the system to retain the full list of nodes. For the bumblebee problem,
a value of N = 1 could have been used without affecting the results since no
context was associated with the node’s fitness.

6 Conclusions

We have introduced a new genetic programming operator that allows for an
intelligent search of feature-space. Memetic crossover’s ability to exploit an indi-
vidual’s successful experiences in a particular sub-problem and allow others the
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opportunity to imitate the actions that led to that success has a dramatic impact
on the time required to find a solution. Its purpose is not to replace the standard
crossover operator but to enhance it. The standard crossover operator explores
the feature-space in search of better solutions, but has the undesired effect of
being destructive much of the time. Memetic crossover allows the population as
a whole to better benefit from the knowledge gained through this exploration
by propagating these partial solutions to others in context, which reduces the
destructiveness associated with crossover. For the memetic approach to reach its
potential, the problem being attempted must lend itself to the organized decom-
position into sub-problems, for they provide the context in which the crossover
operates. Without context, much of the intelligence of the approach is lost.

As was seen, memetic crossover does incur additional processing costs. How-
ever, when these costs are considered in the anticipated problem domain where
the evaluation time for individuals is orders of magnitude larger than those en-
countered in the current work, these costs are negligible when compared to the
time saved through the reduction in the number of evaluations.

7 Future Work

This paper should be viewed as an introduction to the memetic crossover ap-
proach. A number of areas are available as future work. The role of the non-
terminal multiplier used in sorting successful and failed nodes is not well un-
derstood. Further investigation into exactly how this affects the overall learning
in the system is warranted. Currently, selection of the donor uses tournament
selection, which is random. If this selection could be made more intelligently,
based on its successes with matching sub-problems, the resulting crossover may
be more productive. It would also be interesting to apply this approach to prob-
lems with strongly typed variables [13]. This would allow node matching to be
more accurate and allow for better replacement of poorly performing areas.

We wish to apply memetic crossover to problems, such as robot learning, in
which evolutionary approaches are generally considered “off-line” methods due
to their need for many expensive learning experiences [14].
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